- (5) The one-engine-inoperative take-off distance, using a normal rotation rate at a speed 5 knots less than V_R , established in accordance with paragraph (c)(2) of this section, must be shown not to exceed the corresponding one-engine-inoperative takeoff distance, determined in accordance with §23.57 and §23.59(a)(1), using the established V_R . The takeoff, otherwise performed in accordance with §23.57, must be continued safely from the point at which the airplane is 35 feet above the takeoff surface and at a speed not less than the established V_2 minus 5 knots. - (6) The applicant must show, with all engines operating, that marked increases in the scheduled takeoff distances, determined in accordance with §23.59(a)(2), do not result from over-rotation of the airplane or out-of-trim conditions. [Doc. No. 27807, 61 FR 5184, Feb. 9, 1996] ## § 23.53 Takeoff performance. - (a) For normal, utility, and acrobatic category airplanes, the takeoff distance must be determined in accordance with paragraph (b) of this section, using speeds determined in accordance with §23.51 (a) and (b). - (b) For normal, utility, and acrobatic category airplanes, the distance required to takeoff and climb to a height of 50 feet above the takeoff surface must be determined for each weight, altitude, and temperature within the operational limits established for takeoff with— - (1) Takeoff power on each engine; - (2) Wing flaps in the takeoff position(s); and - (3) Landing gear extended. - (c) For commuter category airplanes, takeoff performance, as required by §§ 23.55 through 23.59, must be determined with the operating engine(s) within approved operating limitations. [Doc. No. 27807, 61 FR 5185, Feb. 9, 1996] ## §23.55 Accelerate-stop distance. For each commuter category airplane, the accelerate-stop distance must be determined as follows: (a) The accelerate-stop distance is the sum of the distances necessary to— - (1) Accelerate the airplane from a standing start to V_{EF} with all engines operating; - (2) Accelerate the airplane from $V_{\rm EF}$ to $V_{\rm I}$, assuming the critical engine fails at $V_{\rm EF}$; and - (3) Come to a full stop from the point at which V_1 is reached. - (b) Means other than wheel brakes may be used to determine the accelerate-stop distances if that means— - (1) Is safe and reliable; - (2) Is used so that consistent results can be expected under normal operating conditions; and - (3) Is such that exceptional skill is not required to control the airplane. [Amdt. 23-34, 52 FR 1826, Jan. 15, 1987, as amended by Amdt. 23-50, 61 FR 5185, Feb. 9, 1996] ## §23.57 Takeoff path. For each commuter category airplane, the takeoff path is as follows: - (a) The takeoff path extends from a standing start to a point in the takeoff at which the airplane is 1500 feet above the takeoff surface at or below which height the transition from the takeoff to the enroute configuration must be completed; and - (1) The takeoff path must be based on the procedures prescribed in §23.45; - (2) The airplane must be accelerated on the ground to $V_{\it EF}$ at which point the critical engine must be made inoperative and remain inoperative for the rest of the takeoff; and - (3) After reaching $V_{\textit{EF}}$, the airplane must be accelerated to V_2 . - (b) During the acceleration to speed $V_2,$ the nose gear may be raised off the ground at a speed not less than $V_{\text{R}}.$ However, landing gear retraction must not be initiated until the airplane is airborne. - (c) During the takeoff path determination, in accordance with paragraphs (a) and (b) of this section— - (1) The slope of the airborne part of the takeoff path must not be negative at any point; - (2) The airplane must reach V_2 before it is 35 feet above the takeoff surface, and must continue at a speed as close as practical to, but not less than V_2 , until it is 400 feet above the takeoff surface;